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ABSTRACT 

Multispectral imagery (MSI) of Las Vegas, Nevada, were investigated to determine their 

potential for accurately mapping nocturnal lighting using a reference spectral library of 

lighting types. Nocturnal lighting classifications of International Space Station (ISS) 

astronaut color photography and 8-, 6- and 4-band MSI generated by modeling high 

spectral resolution hyperspectral imagery (HSI) data to lower spectral resolution were 

compared to lighting identification accomplished using the full resolution HSI spectral 

signatures. The results indicate that ISS imagery does not have the spectral resolution 

necessary to accurately distinguish between the emission features of outdoor lighting. 

The modeled multispectral band configurations demonstrated somewhat improved 

separation of certain lighting types by their spectral signatures, however, with only 8, 6, 

or 4 spectral bands, accurate discrimination of lighting types still remains a daunting task. 

While the different colors associated with outdoor lighting can be visually delineated in 

MSI data, the limited spectral information does not allow for accurate lighting type 

classification because of the inability to identify specific sharp emission features. 

Mapping nocturnal lighting using MSI data does have some utility, and certainly would 

provide better spatial coverage, however, HSI remains the most accurate method to 

differentiate the emission features associated with urban outdoor lighting. 
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I. INTRODUCTION 

If viewed from air or space, the lights of cities and other human settlements reveal 

information about human activity that would normally be difficult to obtain during the 

day. A high-resolution night image of a city can reveal street patterns, areas of lighting 

concentration and information as to which types of outdoor lighting is used. With 

multiple images over the same area and at different time intervals, change detection can 

be as easy as lights on/lights off. Optical remote sensing from space already provides 

some of this information with high temporal coverage and on a global scale. As the 

technology of remote sensing advances into higher spatial/spectral/temporal resolutions, 

the information derived from night-lights will likely become much more useful, enabling 

even quantitative information extraction. 

A. PURPOSE OF RESEARCH 

This research focuses on the identification of lighting sources in Las Vegas, 

Nevada, USA, using airborne imaging spectrometer data (hyperspectral imaging, or HSI) 

to establish a lighting characteristics baseline, then utilizing space-based multispectral 

imagery (MSI) in an attempt to spatially extrapolate to areas not covered by the HSI data. 

Additional spectral modeling was conducted for selected MSI spectral band combinations 

to estimate MSI capabilities for detecting and mapping specific lighting types.  

Imaging spectrometers have high spectral resolution (up to hundreds of spectral 

measurements), which allow discrimination and identification of specific lighting types. 

These sensors, however, have a limited spatial coverage and no satellite-based nighttime 

HSI capabilities currently exist for spectral mapping. Space-based multispectral sensors, 

on the other hand are quite numerous, and more are being launched all the time. If MSI 

nighttime coverage was available and could be used to derive the needed spectral 

information to identify lighting by type, it would relieve the cost of acquiring 

hyperspectral imagery to be able to map the same variable. 

The potential use of satellite-based imagery to observe cities at night was first 

noted by Croft (1978). Since Croft, nighttime imagery has been used for various 



 2

applications including spatially modelling socio-economic variables (Sutton 1997 & 

2003; Sutton et al., 1997, 2001, 2003), estimating artificial sky brightness (Cinzano et al., 

2000), inventorying heavily lit fishing boats (Cho et al., 1999), detecting power outages 

following disasters (Elvidge et al., 1998) and identifying lighting types by their spectral 

signatures (Elvidge & Jansen, 1999; Elvidge & Green, 2004; Elvidge & Keith, 2010; 

Kruse & Elvidge, 2011). 

B. SPECIFIC OBJECTIVES 

The objective of this study was to test the ability of multispectral imagery to 

discriminate and identify nighttime light sources. Specifically, this research explored: 

1) Determination of lighting types found in Las Vegas, Nevada using a 

hyperspectral dataset and a high spectral resolution lighting type spectral 

library to establish a night lights identification and classification baseline. 

2) Classification of light sources for Las Vegas, Nevada using a multispectral 

image acquired by astronauts on the International Space Station (ISS) to 

determine feasibility of light identification in MSI data. 

3) Modeling of potential MSI capabilities using spectral resampling of the 

hyperspectral dataset to match current and possible future multispectral 

remote sensing satellite systems. 

Previous work in night remote sensing has pointed out that artificial and natural 

light sources all have characteristics that can be differentiated within the visible to near-

infrared (VNIR) region of the electromagnetic spectrum (Elvidge et al., 2010). These 

common characteristics are due to our eyes being sensitive to visible light and we choose 

lighting that emits primarily in this region to maximize efficiency. Additionally, MSI 

sensors are often modeled after the spectral sensitivity of the human eye. If we can 

distinguish different lighting types by their color using our eyes, MSI theoretically should 

be able to automatically and quantitatively accomplish the same.   
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II. BACKGROUND 

 The approach to extracting information from optical remote sensing at night is 

slightly different than during daylight hours. The reflectance of materials plays a vital 

role when surface materials are illuminated by sunlight, while the emission of natural and 

artificial light from activities on Earth drives the information content for nighttime 

studies. Understanding the chemical processes of light emission of artificial sources as 

well as temperature characteristics of natural materials are important for retrieving 

valuable knowledge from nighttime imagery. The following is a brief overview of the 

dual nature of electromagnetic radiation, spectral characteristics of lighting and optical 

remote sensing. 

A. ELECTROMAGNETIC RADIATION 

1. Wave Nature of Light 

Electromagnetic radiation (EMR) is characterized as transverse sinusoidal waves 

consisting of both an electric (E) and magnetic (B) field that are at right angles to each 

other and perpendicular to the direction of propagation (Jensen, 2007) (Figure 1). In 

addition, there are three main properties of EM waves; frequency, wavelength and 

amplitude. A wave’s frequency (ν) is the number of wave crests that pass a fixed point in 

a given period and is commonly measured in Hertz (Hz). The wavelength (λ) refers to the 

distance between two adjacent crests or the distance a wave travels during one cycle. The 

amplitude is the height of the crest of each wave and is a measure of the amount of 

energy that is transported by the wave. Amplitude corresponds to the intensity of 

radiation and in the case of visible light, the brightness. Figure 1 illustrates the interaction 

between the electric and magnetic fields along with their characteristics. 
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Figure 1.   The electromagnetic wave. The height of the electric and magnetic fields 
correspond to the amplitude of the wave (From Lillesand et al., 2008) 

All objects with temperatures above absolute zero emit EMR and all EMR travels 

at the same speed in a vacuum (Jensen, 2007). The speed of light (c) is the speed at which 

EMR propagates and is approximately equal to 2.998 x 108 m/s. The speed of light has 

two components, frequency (ν) and wavelength (λ). The equation that relates ν and λ is 

given by: 

  
 c    (1) 

where ν and λ are inversely proportional to each other. 

2. Electromagnetic Spectrum 

The electromagnetic spectrum (EMS) is a linear continuum of all possible energy 

frequencies of EMR. The most familiar form of EMR is visible light, although it occupies 

a very small region within the EMS. Other familiar forms of energy that lie along the 

spectrum include, cosmic rays, gamma rays, x rays, ultraviolet, infrared, microwaves, and 

radio waves. The visible light portion ranges from approximately 400 to 750 nanometers 

(nm) in wavelength. This region can be further subdivided into colors of light, where the 

primary colors blue, green and red approximately correspond to wavelengths 450, 550 

and 650 nm, respectively. Figure 2 shows the visible light portion within the full EMS. 
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Figure 2.   The electromagnetic spectrum (From Silberberg, 2009) 

3. Particle Nature of Light 

 Light energy exhibits additional characteristics that cannot be explained by wave 

theory alone. Previous research indicates that light behaves as particles in addition to 

behaving like a wave (Silberberg, 2009). Particle theory treats EMR as packets of 

discrete quantized energy called photons. Some characteristics of light that led to particle 

theory are blackbody radiation, and the existence of atomic line spectra. 

a. Blackbody Radiation 

As previously stated, all objects with temperatures above 0 K emit EMR. 

When an object is heated to a temperature of about 1000 K, it will begin to emit light in 

the visible range (Silberberg, 2009). The tungsten filament of an incandescent light bulb 

works in this manner. When the filament’s temperature begins to increase, the emitted 

light will gradually increase in intensity while the wavelength of energy decreases. These 

are the characteristics of blackbody radiation. A blackbody emits the maximum intensity 

of radiance across all wavelengths that it is possible to radiate for the particular 

temperature of the body (Gibson, 2000) (Figure 3). The Stefan-Boltzmann Law gives the 

energy emitted by a blackbody: 

 4M T   (2) 
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where M is the energy emitted, T is temperature and σ is the Stefan-Boltzmann constant 

which is equal to 5.6697 x 10-8 W m-2 K-4.  

 

Figure 3.   Blackbody radiation curves for the Sun, an incandescent lamp, and Earth. The 
visible radiation bands are highlighted (From Lillesand et al., 2008) 

Wien’s Displacement Law is used to find the wavelength at which there is a peak in 

radiation. 

 
max /a T    (3) 

where a is a constant 2.898x10–3 m K and T is temperature. 

b. Atomic Line Spectra 

When an element is vaporized and excited either thermally or electrically, 

the gas will emit light in the form of photons. If that light is then passed through a narrow 

slit and refracted by a prism, it will separate into discrete lines rather than a continuous 
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spectrum. The wavelengths associated with the observed lines are characteristics of the 

elements producing them (Silberberg, 2009). Figure 4 compares the spectral lines of three 

different elements. 

 

Figure 4.   Spectral lines of hydrogen compared with the visible spectrum and 
spectral lines of mercury and strontium  

(From Silberberg, 2009) 

B. EXTERIOR LIGHTING TYPES 

Out of all the energy associated with the EMS, only a small portion (400 to 

760 nm) is capable of producing the sensation of light to the human eye (Sharp, 1951). At 

night, we must rely on light produced either naturally or artificially. Over time, there 

have been substantial improvements in the way we produce light. Previously, the lights of 

cities and other human settlements originated primarily from heat sources such as fire, oil  
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lamps, or incandescent light bulbs. Today, lamps that produce light electrically dominate 

outdoor lighting. The following provides a short description of the common outdoor 

lighting types used today. 

1. Incandescent 

Incandescent lighting accounts for much of indoor as well as exterior 

illumination. The main light-producing component of this type of lamp is its filament. 

Tungsten is the most widely used material for the filament since it has a melting point of 

approximately 3650 K and its resistance increases with temperature (Sharp, 1951). When 

electricity is passed through the filament, the metal will heat to a given temperature and 

produce a continuous spectrum characteristic of a blackbody at that temperature (Figure 

5). The wavelength at which the curve peaks is between 900 and 1050 nm (Elvidge et al., 

2010). Depending on the size of the lamp, the bulb can contain nitrogen or argon gas, 

where smaller bulbs have filaments sealed in a vacuum. Quartz halogen lamps are a 

variation of incandescent lighting where high-pressure halogen gasses like iodine or 

bromine are added. 

 

Figure 5.   Emission spectrum of a clear 200 Watt GE incandescent bulb  
(After Elvidge and Keith, 2010). 
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2. Gas Discharge 

All gas discharge lamps produce radiation by passing electricity through an inert 

gas (Sharp, 1951). There are several advantages to using gas emission as a light source. 

Using different gasses can control the desired color of visible light. In addition, choosing 

gasses that have emission primarily across the visible portion of the EMS can reduce the 

amount of UV radiation that can damage human eyes.   

a. Neon 

Neon lighting is often used as signage for advertising or to attract attention 

to a building since the small diameter tubing used to house the gas can be molded into 

different shapes (Sharp, 1951). The characteristic color of neon gas is primarily red 

although coating the glass or introducing different gasses can change the color (Figure 6). 

The efficiency of neon lighting is not very high and is generally not used for illuminating 

large areas.   

 

Figure 6.   Emission spectra of red and blue neon lamps  
(After Elvidge & Keith, 2010). 

b. High and Low Pressure Sodium 

Used primarily as outdoor lighting, sodium vapor lamps are high intensity 

discharge (HID) lamps and are very electrically efficient compared to other gas discharge 

lighting (Sharp, 1951). Because sodium is a solid below 140 degrees Fahrenheit, neon gas 

or mercury vapor is used in the process of vaporizing the sodium. Sodium vapor’s 
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dominant visible wavelengths are essentially monochromatic with emission lines at 

approximately 589 nm producing yellow/orange light. The strongest emission is located 

at 819 nm (Figures 7 and 8). Most cities at night tend to appear orange due to the 

widespread use of outdoor sodium vapor lighting. Depending on the application, there are 

two different types of sodium lamps, high and low pressure.  

 

Figure 7.   Emission spectrum of a 150 watt high-pressure sodium lamp  
(After Elvidge & Keith, 2010). 

 

Figure 8.   Emission spectrum of a 18 watt low pressure sodium lamp  
(After Elvidge & Keith, 2010). 

c. Mercury Vapor 

The spectral lines of mercury vapor give these lamps a more appealing 

color to the eye when compared to sodium vapor lighting. There are several emission 
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peaks that correspond to an overall blue/green color (Figure 9). Some of the main 

emission peaks, however, correspond to harmful ultraviolet (UV) light. To block the UV 

emission, the glass tube containing the gas is either designed to filter out the radiation or 

coated with a phosphor in order to produce a clear white light. Mercury vapor lamps are 

commonly employed as large area overhead lighting (Sharp, 1951). Metal halide lamps 

are a slight variation of the mercury vapor lamp where metal halide gasses are added to 

produce more desirable variations in color. 

     

Figure 9.   Emission spectrum of an Iwasaki mercury vapor 60 watt lamp  
(After Elvidge & Keith, 2010). 

d. Fluorescent 

Fluorescent lamps produce light through the excitation of electrons in low-

pressure mercury vapor and inert gases such as argon, xenon, neon, or krypton. The 

primary emission produces a combination of UV and visible light. To convert the UV 

light into visible light, bulbs are coated with a transforming agent known as a phosphor. 

Phosphors can be mixed in different quantities to produce an infinite range of colors 

(Sharp, 1951). Using different phosphors will also affect the spectral characteristics of the 

light produced. Fluorescent lamps have two primary emission lines at 544 and 611 nm 

(Elvidge et al., 2010) (Figure 10). There are a number of different varieties of fluorescent 

light fixtures, to include long tube fixtures and the popular compact fluorescent light 

(CFL), which has a spiral shape. CFLs have steadily replaced incandescent bulbs as a 

source of illumination in many indoor and outdoor applications. 
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Figure 10.   Emission spectrum for a 5000 K fluorescent light  
(After Elvidge & Keith, 2010). 

3. Light Emitting Diode 

Potentially replacing fluorescent lighting in the future, the light emitting diode 

(LED) has become increasingly popular in indoor and outdoor lighting. LEDs are more 

energy efficient, last longer, and can withstand vibrational shock better than other types 

of lighting (Held, 2009). Contrasting sharply to the creation of illumination with other 

sources, LEDs produce light by electroluminescence where electrons are moved from a 

high to a low energy state on a semiconductor substrate (Elvidge et al., 2010). Wide 

ranges of colors are obtainable by using different inorganic semiconductors, coating the 

bulb with a phosphor, or combining multiple LEDs of varying colors. LED spectral 

emission characteristics are much different from other types of artificial lighting.   Their 

spectra typically have narrow emission bands with virtually no NIR emission (Figure 11). 

 

Figure 11.   Spectra from five colored LEDs (After Elvidge & Keith, 2010). 
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C. OPTICAL REMOTE SENSING 

Optical remote sensing systems record electromagnetic energy in wavelengths 

that can be reflected and refracted with lenses and mirrors. The portion of the EMS that is 

typically associated with these systems ranges from ultraviolet (UV) to thermal infrared 

(TIR). Optical systems that typically produce spectral imagery express recorded energy in 

digital numbers (DN). An image DN can also be referred to as the recorded brightness 

level. The radiometric resolution or dynamic range of a sensor’s detector determines the 

levels of brightness that can be recorded. By measuring the brightness of a pixel across 

many wavelengths, it is possible to identify a material when the spectral properties of that 

material are previously known. A subset of optical remote sensing, multispectral and 

hyperspectral imaging provide the tools necessary for material identification. 

1. Multispectral Imaging (MSI) 

MSI is characterized as recording energy in tens of spectral bands (Richards & 

Jia, 2006). In general, MSI systems utilize wide (~100 nm) spectral bandwidths that 

range from visible to infrared wavelengths. The wavelengths can be separated by filters 

as well as employing detectors that are sensitive to different regions of the EMS. A 

device as simple as the camera on a cell phone can be considered a multispectral imager 

with three spectral bands (Red, Green, Blue). There are a wide variety of statistically 

based methods for analysis of MSI data, but they can also be analyzed to some degree 

using MSI spectral signatures. 

2. Hyperspectral Imaging (HSI) 

Imaging spectrometry, sometimes referred to as hyperspectral imaging or HSI, is 

the simultaneous acquisition of images in many narrow, contiguous spectral bands (Goetz 

et al., 1985). Each spatial element in the image contains a relatively high spectral 

resolution spectrum of energy corresponding to the spectral range of the sensor. The 

power of HSI comes from the ability to identify materials by their specific spectral 

reflectance or emission signatures. Through laboratory or field measurements, the 

spectral signatures of many materials are well known and may be contained in spectral 

libraries. Matching the HSI spectrum to a corresponding library spectrum allows 
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identification. Figure 12 compares spectral signature of the mineral kaolinite acquired by 

the multispectral system Landsat Thematic Mapper (TM), NASA’s Airborne 

Visible/Infrared Imaging Spectrometer (AVIRIS, a hyperspectral system) and the spectral 

signature of the mineral acquired by field spectroscopy. Note the significant 

generalization of the Landsat TM spectral signature of kaolinite. 

 
 

Figure 12.   Comparison of kaolinite spectral signature between multispectral  
(Landsat TM), hyperspectral (AVIRIS) data and field spectroscopy.  

Landsat TM band centers are identified by diamonds  
(From Chevrel, 2003) 
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III. PREVIOUS NIGHTTIME REMOTE SENSING RESEARCH 

For decades, the Defense Meteorological Satellite Program (DMSP) Operational 

Linescan System (OLS) has been the source of data for much of the night-lights remote 

sensing products. DMSP-OLS proved to be a valuable tool to map stable emissions of 

cities, towns and industrial sites on a global scale (Elvidge et al., 1997). Recent 

advancements in technology have allowed for mapping nocturnal emission sources at a 

much higher spatial and spectral resolution than what was achieved with DMSP-OLS. 

Research suggests that hyperspectral remote sensing systems can provide the 

spectral/spatial resolution needed to achieve identification of lighting by type.   

A. DMSP CAPABILITIES AND EXAMPLES 

DMSP originated in the mid-1960s as a U.S. Air Force meteorological program 

designed to collect worldwide cloud cover on a daily basis (Kramer, 1994). The DMSP 

satellite is in a sun-synchronous low Earth orbit with a mean altitude of 833 km where 

global coverage is obtained every 24 hours. There have been several upgrades to DMSP 

since the program’s creation. The latest Block-5D series upgrade includes the Operational 

Linescan System (OLS) (Doll, 2008). 

The DMSP-OLS is an oscillating scan radiometer that collects global daytime and 

nighttime imagery across 2 spectral bands, visible and thermal infrared (VIS and TIR) 

(Elvidge et al., 1997). The visible band (0.5 to 0.9 μm) uses a photomultiplier tube (PMT) 

system to intensify the received signal for the detection of clouds at night using 

moonlight. The implementation of the PMT system allowed for an unintentional ability to 

detect city lights, gas flares, and fires at radiances as low as 109 watts/cm2/sr/μm.   

Although the ability of DMSP-OLS to map city lights has been known since the 

1970s, the early night-time mapping products were derived from analog data (film). 

Elvidge et al. (1997) presented the first method for mapping stable city lights using 

digital data from the DMSP-OLS. The results demonstrated that the presence of clouds 

can either obscure or diffuse the VNIR light emission from Earth’s surface. The digital  
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method uses a large number of orbits, use of a local background for VNIR emission 

source detection, and screening for cloud cover to determine stable light emission from 

cities of the United States (Figure 13). 

 

Figure 13.   Stable city lights of the United States from DMSP  
(From Elvidge, et al., 1997) 

DMSP-OLS lacks the ability to discriminate and identify lighting types due to its 

low spatial (2.7 km) and spectral resolution. A more recent mission, the Visible/Infrared 

Imager/Radiometer Suite (VIIRS), provides higher spatial (0.742 km) and radiometric 

resolution than DMSP-OLS but still lacks the spectral resolution needed for nocturnal 

lighting identification (Elvidge et al., 2007). Realizing the shortcomings of DMSP-OLS 

and similar systems, Elvidge et al. (2007) proposed a Nightsat mission concept detailing 

a satellite system capable of producing a cloud-free global map of lights on an annual 

basis. The Nightsat mission concept uses a combination of high-resolution field spectra 

of outdoor lighting, moderate resolution color photography from the International Space 

Station (ISS), and high-resolution airborne imagery to define the spatial, spectral, and  
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detection limit options for a future Nightsat mission. The resulting analysis suggests a 

sensor having 3 to 5 spectral bands with minimal overlap to enable quantitative 

applications for detecting lighting by type. 

B. ISS CITIES AT NIGHT 

Astronauts aboard the International Space Station (ISS) have provided over 

1.5 million digital images of Earth that are freely available through NASA’s “Gateway to 

Astronaut Photography of Earth” repository (http://eol.jsc.nasa.gov). Through an optical 

quality porthole, astronauts capture digital imagery using handheld Digital Single-Lens 

Reflex (DSLR) cameras. A portion of the imagery collected is of major cities at night. 

Like many of the space-based optical remote sensing satellites, the ISS is in a low Earth 

orbit with a perigee and apogee of around 402 km. The ISS’s orbital altitude allows 

capture of higher spatial resolution images than either DMSP or VIIRS. As a remote 

sensing platform, the ISS is unique in that new technology can be brought on board when 

new missions carrying cargo or crewmembers dock with the ISS. 

Early astronauts’ attempts to photograph cities at night often produced blurred 

imagery due to the velocity of the ISS and long exposure times needed (Doll, 2008). In 

late 2002 through early 2003, astronaut Don Pettit, from ISS Expedition 6, substantially 

improved the image quality of photos taken at night by building and installing a tracking 

device to compensate for the ISS’s orbital motion (Evans & Stefanov, 2008). By utilizing 

Pettit’s tracker, crisp and clear nighttime imagery were obtainable at an estimated spatial 

resolution of 60 meters. From late 2007 through early 2008, Flight Engineer Dan Tani of 

Expedition 16 extended Pettit’s night photography techniques and acquired images of 

cities at night using a 400 mm lens corresponding to an estimated ground resolution of 

less than 10 meters (Figure 14). 
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Figure 14.   DSLR image of Long Beach, California acquired from the  
ISS. Orange sodium vapor lights illuminate the port facilities.  

Image ISS016-E-27162 taken on February 4, 2008 using a  
400 mm lens (From Evans & Stefanov, 2008) 

C. SPECTRAL MODELING USING HIGH RESOLUTION LABORATORY 
MEASUREMENTS 

Elvidge et al. (2010) examined the optimal spectral bands for the identification of 

lighting types and estimation of four major indices of lighting efficiency. High-resolution 

emission spectra of 43 different lamps were collected in order to simulate radiances in 

eight spectral bands based on Landsat TM and the human eye photoreceptor bands. This 

research recognizes the high cost of building and operating a hyperspectral sensor having 

detection limits optimal for observation of night-lights and suggests the broad spectral 

bands needed for an alternative instrument.   

Using an Analytical Spectral Devices (ASD), Inc. FieldSpec 3 spectroradiometer, 

emission spectra were collected from 350 to 2500 nm for nine major types of lamps used 

worldwide. The spectra were processed to simulate spectral bands by multiplying the 

radiance at each wavelength by the spectral bands response and then summing the results. 

The resulting simulated broad bands are based on spectral functions from 5 Landsat TM 

bands and 3 human photoreceptor bands. 
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Discriminant analysis using the JMP statistical package was performed in order to 

analyze the simulated spectral bands ability to discriminate lighting types. The results 

show that Landsat TM visible bands with a slight modification to the near infrared (NIR) 

band performed nearly as well as the spectroradiometer data although there was 

confusion between white light emitting diodes (LEDs) and fluorescent lamps. The human 

photoreceptor bands did not perform well. This research also shows that there does not 

appear to be any great value in using spectral bands beyond 1000 nm when distinguishing 

lighting types. In addition, it was found that the inclusion of at least one NIR band proved 

useful to distinguish incandescent sources from other lighting types. 

D. HYPERSPECTRAL IMAGING 

1. AVIRIS 

To further explore the remote sensing of nocturnal lighting, Elvidge & Green 

(2004) analyzed high and low altitude nighttime AVIRIS data over Los Angeles, 

California, and Las Vegas, Nevada. Low altitude AVIRIS data were collected over the 

central area of Las Vegas, Nevada, at 6:35 pm on October 4th, 1998. The AVIRIS sensor 

was flown on a Twin Otter aircraft at an altitude of 12,500 feet above sea level (ASL) 

corresponding to an approximate 3 m spatial resolution. In addition, high altitude 

AVIRIS data were collected over Los Angeles, California, in 2003 with a spatial 

resolution of 20 m. In both AVIRIS datasets, the total radiance was obtained by summing 

all of the AVIRIS channels in the flight line to produce an aggregate spectrum. In the Las 

Vegas dataset, the aggregate spectrum exhibited features found in mercury and sodium 

vapor outdoor lighting. The aggregate spectrum of the Los Angeles dataset showed none 

of the emission lines that characterize most outdoor lighting. A small number of pixels 

had detected emissions from heavily lit automobile dealerships, gravel quarries, and gas 

flares in oil refineries. 

The resulting analysis showed that the AVIRIS sensor at both high and low 

altitude is capable of detecting bright lights pointed directly into the sky as well as minor 

gas flares in the shortwave infrared (SWIR) region. The spectral signatures of AVIRIS-

detected nocturnal lighting and gas flares were found to have sufficient detail to make the 
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identification of lighting type or the composition of burning gas(es) feasible. The overall 

assessment, however, was that AVIRIS (as of 2003) did not have detection limits low 

enough to detect the bright emission lines of general street and outdoor lighting. 

2. ProSpecTIR VS Imaging Spectrometer 

Kruse & Elvidge (2011) focused on assessing the capability of hyperspectral 

remote sensing to identify and map nocturnal lighting located in Las Vegas, Nevada. The 

authors were able to map select artificial light sources using data from both the 

ProSpecTIR-VS imaging spectrometer and a NOAA spectral library of lighting types. 

The ProSpecTIR-VS imaging sensor produces a 360-band hypercube over a 

spectral range from 0.4 to 2.45 micrometers with a 5 nm spectral resolution. Covering 

approximately the same spectral range, the NOAA spectral library contains 43 different 

spectral signatures across 9 major lighting types at 1 nm spectral resolution. Pixel 

signatures from the hyperspectral image were interactively extracted and visually 

compared to signatures from the spectral library. 

A binary encoding supervised classification was used to carry out light 

identification on a pixel-by-pixel basis. The binary encoding classification is  

a spectral matching algorithm that compares each image spectrum in the imaging 

spectrometer dataset to each spectrum in the spectral library. Only 190 spectral bands 

(0.4–1.4 micrometers) were needed to classify lighting types since the spectral signatures 

of lighting types in the spectral library show that little information can be useful beyond 

1.4 micrometers. To help locate the origin of specific spectral signatures, the ProSpecTIR 

image was overlain with a ~0.6-meter spatial resolution panchromatic Quickbird image 

corresponding to the same area of interest. The resulting map of lighting types shows 

metal halide lights, two colors of neon (red and blue), and high-pressure sodium light 

sources spatially associated with their ground locations (Figure 15).   
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Figure 15.   Classification of night lighting for selected lighting types using binary  
encoding. Classification map overlain on Quickbird image to  

illustrate building association with lighting type  
(From Kruse & Elvidge 2011). 

To build upon the previous nighttime remote sensing research, it would be useful 

to explore the possibility of identifying city lights by type using MSI. The Las Vegas 

ProSpecTIR data were used as the basis in this research for assessing the accuracy of 

nocturnal lighting identification by means of multispectral imagery. 
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IV. DATA AND METHODS 

A. SITE 

Widely known as a popular resort and gambling destination, the city of Las 

Vegas, Nevada is arguably one of the brightest cities on Earth and thus was selected for 

this study. Central to the city, the “Strip” offers a wide variety of lighting types and 

intensities. In order to attract the eye of patrons, a particularly heavy emphasis is placed 

on illuminating every visible aspect of many of the buildings that currently operate within 

the strip. In addition, the 24-hour operation of most businesses in this area ensures an 

ample amount of available light during all hours of the night. A discussion of the lights of 

Las Vegas is not complete without mentioning the Luxor Sky Beam. The strongest beam 

in the world at 43.2 billion candlepower, the Luxor Sky Beam is comprised of 39 xenon 

lamps directed straight into the sky by computer designed curved mirrors (Attractions: 

Highlights, 2012). Figure 16 illustrates the wide variety of lighting in Las Vegas. 

 

Figure 16.   Oblique photo of the Las Vegas Strip at night  
(Courtesy of PDphoto.org) 
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B. DATA 

Depending on the type of analysis to be performed, there are several 

considerations that need to be addressed when collecting nighttime data. For a global 

inventory of lighting, a sensor that has a high revisit rate and moderate spatial resolution 

is needed. If lighting discrimination and identification is the goal, the high spectral and 

spatial resolution that HSI provides is desirable. For the purposes of this research, both 

hyperspectral and multispectral data were acquired. 

1. ProSpecTIR-VS Imaging Spectrometer 

The ProSpecTIR-VS Dual Sensor is a high performance aerial hyperspectral 

imaging system operated by SpecTIR, LLC (spectir.com) that acquires both VNIR and 

SWIR data simultaneously. The dual system combines the AISA’s Hawk (VNIR) and 

Eagle (SWIR) imaging sensors where both imagers are co-aligned to correspond to the 

same swath on the ground as well as providing a single data cube with a spectral range 

from 400 to 2450 nm. In addition, the Hawk lens can be adjusted to match the ground 

pixel size to that of the Eagle sensor. Table 1 summarizes the specifications of the 

ProSpecTIR Dual sensor setup. 

 

Table 1.   Operational characteristics and imaging modes of ProSpecTIR-VS Dual 
Sensor system (SpecTIR Product Line). 
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A 360-band hyperspectral data cube was collected using the ProSpecTIR-VS 

system on July 28, 2009 at 10:55 PM over the Las Vegas strip. The altitude of the collect 

was approximately 1778 m corresponding to a ground sample distance (GSD) of 1.2 m. 

SpecTIR LLC calibrated the HSI datacube to radiance using dark current correction, 

array normalization and radiometric calibration (Kruse & Elvidge, 2010). The entire 

image is 320 lines by 11778 samples (Figure 17). 

 

Figure 17.   True color (650, 550, 450 nm as RGB) ProSpecTIR dataset in  
five segments. Image segmented along numbered labels from left to right. 
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2. International Space Station DSLR Imagery 

The DSLR camera used to acquire the multispectral ISS image used in this study 

was a Nikon D3S (Figure 18). The D3S features a 36.0 mm by 23.9 mm complimentary 

metal-oxide-semiconductor (CMOS) sensor that produces a total pixel count of 

12.87 million. International Organization for Standardization (ISO) sensitivity settings 

can range from 200 to 12800. 

 

Figure 18.   Nikon D3S DSLR camera assembly (Nikon D3S Tech Specs) 

The image selected for this research was acquired during ISS Expedition 26 and 

captures the entire city of Las Vegas, Nevada (Figure 19). A RAW image format was 

requested preserve image quality. Table 2 provides a summary of the camera settings 

during the time of collection. The camera settings indicate that automatic white balance 

and image compression were used during collection. Nonetheless, the ISS image clearly 

shows linear street patterns predominantly lit by sodium vapor lamps as well as the 

characteristic blue/green color of mercury vapor lamps on the left of the city center. The 

Las Vegas strip is well defined by the brightest area (Figure 19 center) of the image.  
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Table 2.   Nikon D3S Camera settings for ISS026E006241.nef 

 

Figure 19.   ISS026E006241.nef acquired from NASA’s Gateway to Astronaut  
Photography of Earth (http://www.eol.jsc.nasa.gov) 
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3. Spectral Library of Lighting 

Elvidge et al. (2010) produced a spectral library of emission spectra for various 

light sources that were collected in a laboratory setting (Figure 20). The instrument used 

for collection was an ASD, Inc. FieldSpec 3 spectroradiometer that had been 

radiometrically calibrated and operating in radiance mode where individual spectra  

are reported in watts m-2 sr-1 μm-1. Post processing yields spectra with 1 nm increments 

from 350 to 2,500 nm. The library is available through National Oceanic and 

Atmospheric Administration’s (NOAA) Earth Observation Group website 

(http://www.ngdc.noaa.gov/dmsp/spectra.html).  

 

Figure 20.   Comparison of selected emission spectra in radiance  
(0.4 to 1.4 micrometers) for selected lighting types. Spectral signatures  
from the NOAA lighting spectral library (From Kruse & Elvidge, 2010) 
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C. METHODS 

Image processing of various types is required to be performed on each dataset 

before image analysis can be accomplished. The following summarizes the methods used 

for each dataset for this research. 

1. Spectral Library Resampling 

To directly compare the spectral signatures from image pixels and library spectra, 

the spectral library must be resampled to the response of the particular sensor being used. 

In the approach used for this research, because the spectral response of each instrument 

was known, the spectral library was resampled to the appropriate instrument’s response 

by multiplying the library by the response value for a given wavelength. The resulting 

spectral library has the same number of samples for each lighting type as the number of 

spectral bands of the instrument. 

a. Resample to Nikon D3 Response 

Spectral response data for the Nikon D3S camera remains unpublished. 

Assumed to have similar detector characteristics to the Nikon D3S, response data for the 

purposes of this study was acquired for the Nikon D3 camera (Cao et al., 2009). The 

spectral response of the Nikon D3 detector is reported in normalized spectrum intensity 

ranging from 0 to 1 for the red, green, and blue channels (Figure 21). Response data was 

converted from an ASCII format to a spectral library as a resampling input. Figure 22 

shows the resulting resampled spectral library of select lighting types. 
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Figure 21.   Spectral response for Nikon D3 DSLR camera red, green and blue  
channels recorded at 5 nm intervals (After Cao et al., 2009) 

 

Figure 22.   Spectral library of selected lighting types resampled to match spectral  
response of Nikon D3 DSLR camera. Camera signatures of fluorescent,  

mercury vapor, metal halide, high-pressure sodium, and  
red neon are shown. 

b. Resample to Worldview 2 Response 

In orbit since October 2009, DigitalGlobe’s WorldView-2 (WV-2) 

satellite sensor provides imagery in 8 spectral bands as well as a high spatial resolution 

panchromatic band (Spectral Response for DigitalGlobe Earth Imaging Instruments, 
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2011) (Figure 23). While not currently configured for nighttime imaging, the WV-2 

spectral band responses provide a model for existing and possible future MSI sensors to 

help test probable nighttime imaging capabilities. Therefore, the NOAA spectral library 

of lighting types was resampled to the 8 multispectral bands of the WV-2 sensor response 

to help prototype the performance of these systems (Figure 24 left). In addition to the 8-

band mode, additional spectral libraries were created for 6-band (coastal blue, blue, 

green, yellow, red and red edge) and 4-band (blue, green, red, and NIR1) modes to test 

those alternate configurations (Figure 24 middle and right). 

 

Figure 23.   Spectral response of the WorldView-2 satellite  
(From http://www.digitalglobe.com/downloads/DigitalGlobe_Spectral_Response.pdf) 
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Figure 24.   Spectral library of selected lighting types resampled to the WorldView-2  
spectral response for the 8-band (left), 6-band (middle), and  

4-band (right) modes. 

2. Nikon D3S DSLR Camera Imagery 

a. RAW Conversion 

A RAW image is the highest quality format that the Nikon D3S can 

provide. Images captured in the RAW format provide high radiometric resolution at 12 or 

14 bits either compressed or uncompressed. Because Nikon’s Electronic Format (NEF) 

RAW images are not readily ingestible by remote sensing software, a conversion to an 

appropriate but lossless format is needed. The ISS image was converted from the RAW 

format to a 16-bit TIFF file. No adjustments to the image were made during conversion. 

b. Image Registration and Spatial Subsetting 

A previously georeferenced ISS image with the same serial number  

as the RAW image used for this research was obtained from NOAA 

(http://www.ngdc.noaa.gov/dmsp/ISS_Las_Vegas.html). Ground control points (GCPs) 

were selected and used as input to perform image to image registration with a 1st order 
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polynomial nearest neighbor method. The resulting map referenced ISS image yields 

pixels with a spatial resolution of 20 m. A spatial subset was also performed on the 

georeferenced results to remove border areas that were introduced by the image 

registration process.   

c. Saturation and Dark Pixel Masking 

When the DN of a pixel is at or above the radiometric threshold of a 

sensor, that pixel is considered saturated and should be ignored when performing image 

analysis.   Saturated pixels provide little information in spectral studies because the actual 

brightness of the pixel is unobtainable. Figure 25 shows areas of saturation primarily 

along the Las Vegas strip. Since the aim of this research is to classify pixels exhibiting 

light emission, dark pixels found in the image were also ignored. Image statistics suggest 

that the darkest pixels have DN values between 0 and 10,000 on average for all three 

bands. Two criteria determined whether a pixel will be ignored, (1) any pixel that had a 

DN at the saturation threshold value regardless of spectral band and (2) pixels with DNs 

between 0 and 10,000.   

 

Figure 25.   Masked pixels of saturated areas (red) in the ISS image. Saturation  
occurs primarily along the Las Vegas Strip. 
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d. Supervised Classification 

A spectral information divergence (SID) supervised classification was performed 

using the Nikon D3 resampled spectral library of lighting type as reference spectra. The 

SID method treats each pixel spectrum as a random variable and defines a probability 

distribution from its spectral histogram. The spectral similarity between pixel and 

reference spectra is then measured by the discrepancy of probabilistic behaviors between 

them (Chang, 1999). The SID method is calculated in the following manner: let x 

represent a given multispectral/hyperspectral pixel vector and y a given reference vector 

 x  (x1,..., xL )T   (4) 

and 

 y  (y1,..., yL )T   (5) 

where each component xl is a pixel of band image Bl and each yl is a sample from the 

reference data. Then x and y can be modeled as a random variable by defining an 

appropriate probability distribution. Assuming each x and y component are nonnegative, 

both are then normalized to the range [0,1] by 

 pj  x j / xl
l1

L

   (6) 

and 

 qj  yj / xl
l1

L

   (7) 

so that 

 1{ }L
l lp p    (8) 

and 

 1{ }L
l lq q    (9) 

where p and q the desired probability vectors for pixel vector x and reference vector y, 

respectively. Using p and q, the SID method is defined by 

 SID(x, y)  D(x || y) D(y || x)  (10) 

where 

 D(x || y)  pl
l1

L

 log(pl / ql )  (11) 
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and 

 D(y || x)  ql log(ql / pl )
l1

L

   (12) 

Like most spectral mapping methods, the SID method assumes that the data to be 

classified is already in radiance or reflectance. Unfortunately, the ISS imagery used for 

this study could not be converted to radiance units due to the lack of appropriate 

conversion parameters and/or a published method to do so. This limitation is somewhat 

overcome since each pixel and reference vector is normalized with a range of 0 to 1 

during processing in Equations 6 and 7.   

3. ProSpecTIR Imaging Spectrometer Data 

a. Image Registration 

To provide a ground truth image for the ISS nocturnal lighting 

classification, the full ProSpecTIR imagery was map referenced by performing image 

registration using a geometry lookup table (GLT) file. The GLT file is produced utilizing 

aircraft altitude information, inertial navigation details, and GPS collected concurrently 

with image acquisition and contains detailed acquisition information that allows model-

based geometric map registration using platform geometry. The GLT provides the map-

referenced coordinates for every image pixel in the dataset, which are then used to 

geocorrect the data to match a specified map projection and pixel size. 

b. Spectral and Spatial Subsetting 

Because the bulk of outdoor lighting emission features occur between 

0.4 and 1.0 μm, a spectral subset of the ProSpecTIR imagery was created to bring the 

number of spectral bands down to 128 (0.4 to 1.0 μm) from the original 360. The selected 

spectral range of this subset also benefits from being well outside major atmospheric 

water absorption bands (approx. 1.4 and 1.8 μm). In addition, a spatial subset of the same 

dataset was created to eliminate areas of low illumination. Both pre-processing functions 

allow for a reduced computational time for subsequent processing. 
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c. Dark Pixel Masking 

A mask was created for the ProSpecTIR imagery to ignore areas that 

contain zero emission features. Because the majority of the image is essentially dark, the 

maximum of all of the mean radiance values across all spectral bands is good indicator of 

dark areas and was used as a masking threshold value. This ensures that the classifier to 

be used only examines pixels with emission above the mean of the darkest radiance 

values for all spectral bands. 

d. Supervised Classification 

The SID classification method was performed on all ProSpecTIR datasets 

using spectral signatures of selected lighting types from the NOAA spectral library as 

reference. Used as a basis for evaluation of the ISS nocturnal lighting classification, the 

entire hyperspectral image was validated using spatial/spectral data browsing and visual 

inspection of emission lines found in the ProSpecTIR data and spectral library. Regions 

of interest (ROIs) were created for image pixels exhibiting spectral emission 

characteristics matching those found in the NOAA spectral library and these were then 

used in the SID classification.   
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V. RESULTS 

A. PROSPECTIR DATA CLASSIFICATION 

Lighting types classified in the ProSpecTIR data using the above approach 

include high-pressure sodium vapor, metal halide, neon (red and blue), LED (red and 

blue), and fluorescent lighting. There were a few instances of light sources exhibiting 

emission lines not found in the spectral library. Figure 26 shows the classification for all 

of the ProSpecTIR segments shown in Figure 17. Figure 27 is a subset of the 

classification for segment 3 from Figure 26 showing detail that is consistent with results 

from Kruse & Elvidge (2011) (Figure 15). 

 

Figure 26.   Nocturnal lighting type classification for five outdoor lighting types  
using the full ProSpecTIR dataset. The area enclosed by the red outline is used  

for further visual inspection (see Figure 27 for color-coded class key). 
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Figure 27.   Georeferenced nocturnal lighting type classification for five outdoor  
lighting types. Due to the spatial size of the dataset, only a small portion of the full 

classification is shown (part of segment 3 from Figure 26). 

B. ISS LIGHTING TYPE CLASSIFICATION  

The ISS image was classified using the SID mapping method with selected 

resampled library spectral signatures of lighting types that were frequently found in the 

ProSpecTIR base classification (Figures 27 and 28). Figure 28 and supporting statistics 

illustrate that approximately 24% of pixels in the image map were classified as 

fluorescent lighting despite the characteristic orange color of sodium vapor lamps found 

across the original ISS image (Figure 19). Mercury vapor, sodium vapor and metal halide 

lighting classes each represent between 3% and 5% of the image while pixels classified 
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as red neon were less frequent (0.5%). Approximately 5% of pixels exhibited camera 

signatures that remained unmatched to the selected signatures from the resampled 

spectral library. 

 

Figure 28.   Nocturnal lighting type classification image for five outdoor lighting  
types (fluorescent: green, metal halide: white, mercury vapor: blue, red neon: red and 

sodium vapor: yellow). Black areas are either masked or unclassified. 

To verify the accuracy of the ISS classification results, areas of spatial overlap 

with the ProSpecTIR base image were visually inspected. Figure 29 shows an area 

located south of the strip along Las Vegas Boulevard next to McCarran International 

Airport. White pixels in Figure 29 (right) represent metal halide lighting associated with 

headlamps of vehicular traffic and upward facing billboard lighting. In the area on the 

right of Figure 29 (right), yellow pixels represent downward facing high-pressure sodium 

vapor lighting used to illuminate apron areas of the airport. Figure 29 (middle) shows the 
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same area in the ISS classification. A comparison of both classification images shows 

that the ISS classification produced much different results from the base classification.   

An examination of the camera signatures in the original ISS image revealed two 

possible reasons for the differences;  (1) camera signatures associated with known 

lighting do not accurately match the resampled library spectral signatures for the same 

lighting type, and (2) camera signatures vary highly as distance increases from pixels 

associated with the lighting source. 

 

Figure 29.   Comparison of original ISS image (A, left), classified ISS image  
(B, middle) and classified ProSpecTIR image (C, right) for a selected area. 

Figure 30 shows spectral plots for known metal halide (left) and high-pressure 

sodium vapor lighting (right) for selected pixels in the ISS image before classification. 

ISS camera signatures for pixels associated metal halide and high-pressure sodium vapor 

do not match the general shape of library spectra for these lighting types. Although this 

area has been shown to exhibit mostly metal halide and high-pressure sodium vapor 

lighting, the ISS classification suggests that there are many more lighting types present. 

Although an area that is principally lit by one type of light, the camera signature signature 

will change when moving from bright pixels to darker pixels of the same lighting type. 
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Linear profile transects and spatial/spectral browsing of camera signatures for high-

pressure sodium vapor lit areas confirm that camera signatures vary highly when the 

distance from the brightest pixels increases. This phenomenon is consistent for multiple 

lighting types throughout the whole ISS image. 

 

Figure 30.   Camera signatures of known metal halide (left) and high-pressure  
sodium lighting (right) compared to their corresponding  

library spectral signatures. 

C. 8-, 6-, AND 4-BAND WV-2 MODELED CLASSIFICATION 

For this study, the 128-band ProSpecTIR classification is considered ground truth 

for nocturnal lighting of Las Vegas, NV and will be referred to as such throughout the 

results. A probability threshold of 0.2 was used for the 8- and 6-band images while a 

0.05 threshold was used for the 4-band image. Figures 31 and 32 show selected areas of 

the nocturnal lighting classification results using the ground truth, 8-, 6- and 4-band WV-

2 modeled images.  
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Figure 31.   Comparison of nocturnal lighting classifications using a spectral subset  
(0.4 to 1.0 mm) of the ProSpecTIR dataset and three WV-2 modeled multispectral 

images. Gray areas are masked pixels and black areas are unclassified pixels exhibiting 
emission features. Note same classification key and colors apply to all three images. 
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Figure 32.   Comparison of ground truth, 8-band, 6-band, and 4-band classification  
images for area ‘A’ 

Figure 32 shows a close up of the area labeled “A” in Figure 31 (left) that refers 

to a linear series of lights associated with “Bill’s Gambling Hall.”  White pixels located 

in the vicinity of the building exhibited spectral emission lines that matched those of 

metal halide lamps. All three WV-2 modeled images show slight confusion between 

metal halide and other gaseous discharge lighting. The 8- and 6-band classifications show 

a mix of both fluorescent and high-pressure sodium vapor lighting while the 4-band 

classification confused these lights almost exclusively with high-pressure sodium vapor 
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lights. Confusion between fluorescent and high-pressure sodium vapor is also exhibited 

in other areas of metal halide lighting found in the ground truth classification. Red neon 

outside of the building mapped well in the 8-band classification. The 8- and 6-band 

classifications correctly mapped the low radiance metal halide light to the west and east 

of the building. The metal halide light “streaking” appears to be a lens artifact possibly 

induced by the imaging spectrometer as it imaged directly over the lighting. Figure 33 

shows an example for selected high-pressure sodium vapor lighting. 

 

Figure 33.   Comparison of ground truth, 8-band, 6-band, and 4-band classification  
images for area ‘B’ 

The area labeled “B” (Figure 31 left) points to high-pressure sodium vapor 

lighting on the Eiffel Tower replica in front of the Paris hotel. This is another example of 

the spectral similarity of fluorescent and high-pressure sodium lighting when resampled 

to a lower spectral resolution. A pattern becomes apparent where pixels between the 

bright sodium vapor lighting (yellow) in the ground truth were incorrectly classified as 

fluorescent lighting (green) in the multispectral classifications (Figure 33). 

Area “C” refers to the red and blue neon lighting located on the Montgolfier 

balloon structure and a series of blue LED lights south of the balloon (Figure 34). The 

ground truth classification shows that the balloon is surrounded on all sides by red neon 

lighting with blue neon lighting on the top of the structure. Although both the 8- and 6-

band WV-2 modeled classifications mapped the red and blue neon lighting on the 

Montgolfier Balloon, it was not to the extent of what the ground truth mapped. The area 

between the two colors of neon lighting was found to exhibit emission lines not found in 

the spectral library (yellow neon) (Figure 35). The WV-2 classifications show that the 
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yellow neon lighting was confused with fluorescent, metal halide and high-pressure 

sodium. Area “C” is the only location where blue LED lighting was located. The 8- and 

6-band classifications mapped blue LED lighting quite well. 

 

Figure 34.   Comparison of ground truth, 8-band, 6-band, and 4-band classification  
images for area ‘C’ 
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Figure 35.   Montgolfier Balloon structure showing three colors of neon lighting.  
(Photo courtesy of http://www.lonelyplanet.com/usa/great-plains/travel-tips- 

and-articles/76005). 

C. CONFUSION MATRICES 

To show the accuracy of classification for the WV-2 modeled images, confusion 

matrices were created using the 128-band ProSpecTIR-VS classification as ground truth. 

The confusion matrices report the overall accuracy, kappa coefficient, percentages of 

classification agreement, omission/commission errors and producer/user errors. The 

overall accuracy is calculated by summing the number of pixels classified correctly and 

then dividing by the total number of pixels (Congalton, 1990). The kappa coefficient (k) 

is a discrete multivariate technique that offers an additional measure of agreement or 

accuracy. The kappa coefficient is computed by 
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where N is the total number of pixels in all the ground truth classes, r is the number of 

rows in the matrix, and xii is the number of observations in row i and column i, xi+ and x+i 

are the marginal totals of row i and column i, respectively. The producer’s accuracy 
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refers the probability of a reference pixel being correctly classified while the user’s 

accuracy is the probability that a pixel classified on the map is actually that class.   

Percentages of class agreement (producer’s accuracy) are reported along the diagonal 

from top left to bottom right and are highlighted in bold. 

1. 8-Band Confusion Matrix 

Table 3 shows the confusion matrix using the ground truth image and the 8-band 

classification map. An overall accuracy of approximately 59% and a kappa statistic of 

0.433 suggest a moderate classification performance for all lighting types mapped. On the 

other hand, a review of the producer and user accuracies show that the neon (red and 

blue) and blue LED classes mapped very well with 8-bands. Conversely, the red LED 

class had zero agreement with the ground truth image and went completely classified as 

the red neon class. Sodium vapor, metal halide, fluorescent and blue neon lighting classes 

showed the next best agreement percentages between approximately 41% and 

91% although confusion between them is apparent. 

 

Table 3.   Classification matrix using the ground truth and 8-band classifications  
of nocturnal lighting. 
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2. 6-Band Confusion Matrix 

Table 4 shows the confusion matrix using the ground truth image and the 6-band 

classification map. The reported overall accuracy is higher than that from the 8-band 

classification although the kappa coefficient is slightly lower. Again, the red neon and 

blue LED class performed well with 100% agreement and high producer/user accuracies. 

The metal halide and blue neon classes had slightly higher percentages for the 6-band 

classification when compared to the same values for the 8-band classification. A review 

of Figure 24 provides some insight on why the gaseous discharge classes performed 

rather poorly when compared to other classes. Metal halide, fluorescent and sodium 

vapor lighting have very similar spectral signatures across the 8-, 6-, and 4 band spectral 

libraries. 

 

Table 4.   Classification matrix using the ground truth and 6-band classifications  
of nocturnal lighting. 

3. 4-Band Confusion Matrix 

Table 5 shows the confusion matrix using the ground truth image and the 4-band 

classification map. At approximately 23%, the overall accuracy of the 4-band 

classification was significantly lower than the 6- or 8-band classification accuracies. A 

very low kappa statistic indicates only slight agreement for all lighting classes.   Blue 

neon shows a 100% class agreement although the user accuracy reveals that only 39.85% 
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of pixels labeled as this class are actually blue neon. The sodium vapor, metal halide, and 

fluorescent classes show higher agreement within that set of classes outside of the 

diagonal. Additionally, increased confusion between similarly colored LED and neon 

classes is introduced with the 4-band configuration.   

 

Table 5.   Classification matrix using the ground truth and 4-band classifications of 
nocturnal lighting. 
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VI. DISCUSSION 

A. SPECTRAL CLASSIFICATION USING ISS IMAGERY 

Using a resampled NOAA spectral library of selected lighting types and moderate 

spatial resolution 3-band MSI from the ISS to identify nocturnal lighting of Las Vegas, 

Nevada proved largely unsuccessful. A comparison of ground truth and classification 

results suggests that this particular MSI system lacks the spectral information needed to 

map nocturnal lighting accurately using spectral signatures. This research identified 

several limitations when using moderate spatial resolution imagery to differentiate 

nocturnal lighting.  

The ISS camera signatures for known metal halide and high-pressure sodium 

vapor lighting pixels did not accurately match the resampled NOAA spectral library 

signatures for those lighting types. When resampled to 3 broad spectral bands, the 

emission features of gaseous discharge lamps become overgeneralized and the ability to 

discern between different types is much more difficult. Several additional image-

processing steps that were not available in this study could have possibly corrected for 

spectral mismatch between camera signatures and library spectra.   Conversion of the ISS 

image from DN value to radiance units (watts m-2 sr-1 μm-1) and resampling the spectral 

library of lighting types to the actual spectral response of Nikon D3S camera would have 

likely improved the performance of classification. 

The NOAA spectral library of lighting types was produced by pointing the 

spectrometer directly at the light source. Only a few areas found in the ISS image of Las 

Vegas, NV featured lighting pointed towards the sky and those pixels were saturated 

making spectral matching difficult. All other areas featured mostly general street lighting 

where light from the lamp fixture is shielded and the actual light from the source cannot 

be viewed from space. The light that is recorded by the Nikon D3S is selectively reflected 

or absorbed by the surrounding surface materials. Reflected light from sodium vapor 

lamps found in the ProSpecTIR dataset featured the same emission lines as unshielded 

lamps although the radiance of those lines varied depending on the absorption and 
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reflection characteristics of that surface. These phenomena would likely produce highly 

variable spectral signatures across all lighting types when resampled to only 3 spectral 

bands.   

At 20 m spatial resolution, light appears to spread much further than at lower 

spatial resolutions. At a glance, outdoor lighting appeared to remain continuous 

throughout areas of light concentration in the ISS image. The spread of light is much 

more concise as seen with the ProSpecTIR imagery at 1.2 m spatial resolution. The ISS 

classification revealed that a camera signature varies with distance from the lighting 

source. Even if camera signatures associated with the source of lighting were correctly 

matched to its reference spectra, the surrounding light would classify as a different 

lighting type. 

B. SPECTRAL CLASSIFICATION USING WV-2 MODELED IMAGERY 

Classification of nocturnal lighting using WV-2 modeled 8-, 6-, and 4-band 

subsets provided additional information on the performance of MSI to spectrally 

discriminate lighting by type. A previous night-lights study from Elvidge et al. (2010) 

suggested that the inclusion of one or more NIR bands could enhance the discrimination 

high intensity discharge (HID) lamps from fluorescent lighting. Therefore, the initial 

hypothesis for this study was that classification of nighttime lighting using the two NIR 

bands from WV-2 would perform much better than the 6 or 4 band configurations for 

HID and fluorescent lighting discrimination. In this study, however, utilizing the NIR1 

and NIR2 bands from the WV-2 sensor did not provide the additional spectral 

information needed to clearly discriminate between the gaseous discharge lighting types 

found in Las Vegas, NV when compared to the 6-band configuration. 

The SID classification method was shown to be sensitive to areas exhibiting 

similar spectral signatures with varying radiance for the WV-2 simulations (Figure 33). 

Areas lower in radiance were classified as fluorescent lighting although the spectral 

signature remained relatively constant between sources of sodium vapor lighting. The 

reason for much of the misclassification is probably due to the close similarity of 

fluorescent and sodium vapor lighting spectral signatures when resampled to a lower 
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spectral resolution. Figure 24 shows that the spectral signatures for fluorescent, red LED, 

metal halide and sodium vapor lighting all have emission peaks corresponding to the 

WV-2 yellow band. Additionally, the SID threshold of 20% used for classification is 

likely a key factor for the introduction of spectral confusion between lighting types. 

Using a lower threshold would have reduced much of the confusion although many of the 

pixels that exhibited emission features would have gone unclassified.  

Analysis of confusion matrices shows that the 8- and 6-band nocturnal lighting 

classifications using SID performed similarly in overall class agreement and general 

mapping ability while the 4-band classification performed somewhat more poorly. A 

general pattern exists between all three confusion matrices where groups of similar 

lighting types were confused with each other. The SID classifier often confused sodium 

vapor, metal halide, and fluorescent lighting classes together across all three WV-2 

configurations while similar colored neon and LED confusion became apparent using 

only four WV-2 bands.  
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VII. CONCLUSION AND RECOMMENDATIONS 

Moderate spatial resolution ISS multispectral imagery of Las Vegas, NV was 

investigated to determine the potential of accurately mapping nocturnal lighting using a 

processed NOAA spectral library of lighting types as reference. Additional MSI research 

was conducted using three WV-2 modeled datasets derived from resampled HSI. The 

primary limitation of using resampled library spectra of outdoor lighting and space-based 

MSI to accurately map nocturnal lighting is the loss of spectral emission features 

exhibited by gaseous discharge lighting.   

Mapping nocturnal lighting using HSI remains the most accurate method to 

differentiate the emission features associated with urban outdoor lighting. Although the 

different colors associated with outdoor lighting can be visually delineated in nighttime 

ISS imagery from a DSLR camera, the limited spectral information and corresponding 

degraded spectral performance of MSI does not allow for accurate lighting type 

classification. At 20 m spatial resolution, camera signatures associated with lighting were 

found to be highly variable as distance increased from the brightest pixels. This led to an 

inaccurate map of nocturnal lighting where one type of light would be classified as 

several. 

Additional MSI research using three WV-2 multispectral band configurations 

demonstrated increased ability to separate lighting types by their spectral signatures. With 

8, 6 or 4 spectral bands, accurate discrimination of lighting types remains a daunting task. 

MSI sensors having spectral bands similar to WV-2 should be able to map certain types 

of artificial lighting quite well (red/blue neon and blue LED) while other types (sodium 

vapor, fluorescent, and metal halide) have high spectral similarities when resampled and 

would be somewhat difficult to separate. 

Numerous opportunities for improvement on this study exist. Future work on this 

subject should include collection of nighttime MSI at a higher spatial resolution than 20 

meters in order to detect and characterize isolated lighting sources. In addition, it would 

be useful to image an area that exhibited all of the lighting types contained in the NOAA 
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spectral library to further research spectral discrimination of more than 5 types. 

Incandescent sources were found in the ProSpecTIR imagery but were excluded from 

classification due to atmospheric absorption. Mapping incandescent sources would likely 

emphasize the utility of using NIR bands to discriminate these from other lighting types. 
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